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Abstract. We consider a low density of positive charge carriers (holes on oxygen ions) 
interacting with magnetic degrees of freedom (spins on copper ions) in a single Cu02plane.  
assumed to be antiferromagnetic and electrically insulating. Analysing the interaction of a 
single hole with the spins. we find it to be a strongly coupled non-topological soliton 
carrying spint. Various energies. spin correlations and overlap parameters are calculated and 
tabulated. Pairs of solitons are determined to be weakly coupled; hence we conclude bi- 
solitons to be an improbable species. 

1. Introduction 

There is by now conclusive evidence that the insulators La2Cu041/ and Y1Ba2Cu3O6lI 
contain two-dimensional spin4 Heisenberg antiferromagnets. This is quite plausible 
considering the existence of isolated layers of C U ' + ( ~ ~ - ) ~  in these materials. Spins of 
individual electrons localised on Cu2+ interact antiferromagnetically via the (filled) 
oxygen orbitals, by the same mechanism ('superexchange') as in classic antiferromagnets 
such as MnF, [ 5 ] t f .  The insertion of anumber of holes (charge carriers) in concentrations 
p racgeg frsm less th2c 9.15 hs!e per C u e 2  ucit ic L2,,,jSro l jCu84 tc 2s 312"~' L A  J 2s 2hut 
0.5 or 1 hole per Cu02  unit in Y 1Ba2Cu307 (depending on the valency assignments that 
one favours in these materials) eliminates this antiferromagnetism in favour of the 
spectacular, newly discovered 19,101 high-T, superconducting (HTS) phase. We wish to 
examine semi-quantitatively some of these features theoretically. This is facilitated by 
the observation that the very same physical parameters (the position of atomic levels E ,  

the strength of on-site Coulomb interactions U and the hopping matrix element ( t )  
required in linear combination of atomic orbitals (LCAO) type band-structure calculation 

1 1  The insulating character of La2Cu0,-based materials (hopping-type conductivity, etc) was noted in [ 11. 
Antiferromagnetism, especially as relating to oxygen vacancies but also to strontium alloying, was noted in 

7 The insulating antiferromagnetic phase of Y,Ba2Cu306-, near x = 0 was studied in [3]. The exchange 
parameter ( J  = 0.137 eV) has been determined in [4]. 
'ii See review on the topic of superexchange in [6]. Specific application to CuO, has been given in [7]  and also 
in [8]. (Note that [7] contains some misprints, which are corrected in the present text.) 
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Figure 1. A portion of the CuOz plane, indicating the basic CuO, unit ceil. In the insulating 
anfiferromagnefic phase, oxygen ions (0) have a nominal valence of 2 -  (spin zero), and 
copper ions (0) a valency of 2+ (spin 9). Neighbouring copper spins S,  and S2 are anti- 
feriomagnetically coupled (by ‘superexchange’ via the intervening oxygen), as in HI* = 
JS1 ‘ S l .  

are also used in the calculation of the superexchange couplings. In the absence of a 
theory of superconductivity, we can at least attempt to examine the insulating phase 
quantitatively. 

We indeed find solitons. Each hole effectively ‘swallows up’ one of the copper ion 
spins and affects a number of additional neighbouring links of the antiferromagnetic 
lattice. The spin correlations are computed and displayed in table 1 below. We also 
examine the ground state of 16 copper ion spins in the presence of two holes, by 
diagonalising a matrix of dimension 218 (262,144). A spin- and space-dependent potential 
between holes is barely sufficient to cause them to bind; therefore, soliton pairs appear 
to have a marginal existence. Examining two-hole ground-state correlation functions, 
we find them to be oscillatory and spin dependent (see table 2). 

Starting with Anderson’s [11] RVB picture, a number of proposals have linked the 
suppressio2 of zntiferromagxetism to the HTS phenomena?. These include the formation 
of solitons, magnetic polarons or bipolarons, variously fermions or bosons, as precursor 
phenomena in the low-density limit. The present paper addresses numerically this issue 
directly. In the case of a single particle, semi-quantitative results can be obtained. 
Indeed, the magnetic polaron in aferromagnetic semiconductor has long ago been solved 
exactly and in closed form [17], although vacuum fluctuations in the antiferromagnet 
render the problem considerably more complex. 

We simplify the analysis by expressing all energies in the same units: D = U/4 ( U  is 
the Couiomb energy parameter on copper ions). The remaining parameters are 
uncertain. We therefore allow for a range of values to achieve a reasonably complete 
theory. As a start, let us examine a single stoichiometric antiferromagnetic Cu2+ (02-), 
plane (illustrated in figure 1) into which the holes are subsequently to be injected. 

2. The antiferromagnetic insulator 

In the band-structure calculation for non-magnetic Y,Ba2Cu,07 in 1181, it was noted 
that a single ‘hopping’ matrix element t = -1.85 eV characterises the relevant 0-Cu 

7 A review of early work linking suppression of antiferromagnetism to superconductivity has been given in 
[12]. The most recent arguments favouring this general approach (‘. . . Evidence for the close connection 
between magnetism and high-temperature superconductivity is steadily mounting . . .’) are briefly sumarised 
in [13]. However, the copper-free Ba-K-BiO, superconductors [ 141 provide counter-arguments favouring bi- 
polaronic conductivity. according to [15] (see theory in [16]). Regardless of the merits of this explanation, it 
should alert one to the possible diversity of unusual mechanisms producing a high T,. 
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overlap, while the respective (Hartree-Fock) orbital energies are equal at E ,  = Ed = 
-3.2 eV relative to the Fermi level p. Identical numbers have been used in the band- 
structure calculation [19] of La2Cu04; we need to extract the one-particle orbital energies 
from these data. Now, it is generally accepted that a substantial two-electron on-site 
Coulomb repulsion parameter U operates on the d electrons in copper ions, albeit, 
enormously reduced from U = 17 eV for the same ion in vacuum [20],  while the anal- 
ogous Coulomb repulsion U. on the oxygen ions is generally considered to be negligible. 
Although we include both the following considerations, we shall observe that a large 
value cf U0 is inccmpztib!e with the established magnitudes of aiitifeiioiiiagneiic 
exchange. 

In the absence of hopping, we extract the one-electron orbital energies (denoted ed 
and ep) from the restricted Hartree-Fock relations &d = ed + t U(&) and E, = 
ep + a Uo(n,), using (nd) = 1 and (n,) = 2 (equivalent to a typical copper valency of about 
2+ and assuming a typical oxygen valency of 2- to be operative in the LCAO calculations 
in [18] and [19].)  With p = 0 and E = -3.2, the one-electron orbitals lie at 

e , = & -  U. (oxygen 0 -) 

ed = E - u / 2  (copper Cu2+) 

while the total energies of two electrons on each ion are 

2e, + U. = 2~ - U. 

2e, + U = 2& 

(oxygen 02-) 

(copper Cu'). 

If the Cu02  unit cell were to contain six relevant electrons, then according to ( l b )  its 
energy would be 6~ - 2U0. However, it is generally believed to contain only five 
electrons. Removal of a single electron from one of the oxygen ions lowers the total 
energy by an amount E .  However, removal of a single electron from the copper ion also 
lowers the total energy, and by a greater amount E + U/2. Thus, when there is a total of 
five electrons per cell, the energetically preferred valences are the familiar ones of 
elementary chemistry: 2+ for copper, and 2- for oxygen. 

The antiferromagnetic exchange parameter J depends strongly on t and U and also 
depends somewhat on U p  We shall consider the extreme instances, U. = 0 and U. = =. 
J is the coupling constant in the effective Heisenberg antiferromagnet 

which describes the spin correlations between the copper ions. It can be calculated by 
considering a single pair of Cu2+ ions and the intervening 02- ions, and comparing 
singlet and triplet energies up to O(f6 ) .  To leading order, J U(f/U)4; the next-higher- 
order contribution, O(t6 /U5) ,  is given below. Although experiment [1-4,21] favours J 
to be of the order of 0.1 eV = 1000 K for the insulating antiferromagnet, neither this 
parameter nor any other ( t ,  the U-values or the &-values) has ever been unambiguously 
determined, and presumably all vary from one oxide compound to the next. Such 
uncertainty requires us to examine a range of resonable values. Towards this end, we 
have found it convenient to define g = U2/8t2, using D = U/4 to set the scale of energy 
and l / g  as the expansion parameter. Expressing the exchange constant in this notation, 
after some algebra [5-81 we find that in the two limiting cases, 

J = D(3/g2)(1  - 2/g) (for g 3 2,  U,, = 0 )  (3a) 
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and 
J = D(1/g2>(i - 3 / d  (forg 3 3, U ,  = m> (3b) 

including all the O(t6) corrections. According to this, J vanishes for g S 2 ( U ,  = 0) or 
g s 3 (Uo = m ) ,  and also at g = 33. Depending on U,, it reaches its maximum I,,, at an 
intermediate value of g: 

J,,, = 0.1111D a t g = 3  (U0 = 0) (4a) 

J,,, = 0.01650 a tg  = 4.5 (U0 = x )  (4b) 

or 

ultimately decreasing as g-* at large g. We use equation (4b) to rule out U ,  = = (or 
indeed any large value), simply because it causes the corresponding J,,, to be too low. 
(ForJ  to assume the value of 0.1, equation (4b) requires that D > 6 and hence U > 24, 
which is half an order of magnitude too high!) It follows that U ,  Uis a better approxi- 
mation than U ,  + U. 

The mapping onto the Heisenberg model and the accuracy of equation (3)? are only 
ensured for g > 3. In the weak-coupling region g < 2, it is reasonable to expect some 
sort of Landau Fermi liquid theory to be appropriate while, in the intermediate-coupling 
range, no systematic expansion is expected to be valid in general. The present paper is 
predicated on the validity of the Heisenberg mapping and hence on strong coupling; 
both are suggested by experiment [l-4,211. 

The two-dimensional Heisenberg s = 4 antiferromagnet of equation (2), with] given 
in equation (3), has a ground state, denoted 1 AF) and ground-state energy EAF = - WeAF 
(WhereNisthenumberof Cu02cel!s andeAF = 0.672 [22]). Thisstate isnon-degenerate, 
has total spin zero, is translationally invariant and has the point group symmetry of the 
square lattice on which the copper ions are disposed. From this antiferromagnet with 
5N elections, we shall now abstract a single electron, i.e. create one hole. 

3. One hole: plane-wave states 

The reader can easilyverify that in creating a hole, the energetics of equations (1) always 
favour removal of the electron from the 0’- bonds of the antiferromagnetic insulator 
rather than from the Cu2+ itself. (This was first suggested in [23] and subsequently 
confirmed by a nuiiibei of dsta [U] showiiig Cd- to be s TGTG ~ i i i s  compared kith Q-.> 
Because the lattice and the antiferromagnetic state are both translationally invariant, 
the resultant hole can be present on any bond, e.g. the reference bond indicated in figure 
2. If we label by i, and i2 the two copper spins bridged by the bond at R I ,  and use the 
Kronecker &notation (6 (R  - R I )  = 1 if the hole coordinateR is at&, and 6 ( R  - R,)  = 
0 otherwise) the total Hamiltonian governing hole plus spins is 

H =  HAF + Hhop --Jx S I ,  * S 1 2 8 ( R  - R I )  +J’ C. (S!, + S I ? )  * d ( R  - - R I )  ( 5 )  
I I 

in which CJ is the hole’s Pauli spin operator. This Hamiltonian contains two principal 
perturbations, proportional to J and J’ ,  respectively. J’ can be estimated by comparing 
the singlet and triplet energies of a single [Cu”O-] pair. The singlet is always preferred, 
and hence J’ > 0. To leading orders in i/g, we find after some algebra [5-8] that 

J’ = w2/g)( l  - l/g) (U0 = 0) (6a) 
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!5 - !4--3- 12 
Figure 2. Singling out one (oxygen) bond at Ro (-) and numbering the other bonds P,2, 
3. . . . and the sites 1,2.3,  . . . for future reference. 

and 

J’ = D(l/g)(l - 1/2g) ( U ,  = E ) .  (6b) 
J’ exceeds J by a factor 8g/3 (if U ,  = 0) and by an even greater factor if U,, > 0; thus, it 
is always an order of magnitude larger than J .  In a plane-wave state, the hole has an 
equal probability of 1/2N to be on each bond. Taking the expectation value in any 
plane-wave state for the hole, we obtain an effective spin Hamiltonian X in first-order 
perturbation theory: 

%AF E h o p  + (1 - 1/2N)HAF + (J’/N)o’sT. ( 7 )  
The last term ST = 2 , S ,  is the total spin operator, all components of which are identically 
zero in the ground state of HAF. Thus the energy of oz = f is the same as for 4 . as might 
be expected in view of the singlet ground state. The 1/2N multiplicative correction to 
HAFamounts to an energy cost of breakingone antiferromagnetic bond, preciselyJeAF/2. 
It must be inciuded in the hole’s total energy e@). Adding all the contributions up to 
second order in the perturbation theory, and measuring the hole‘s energy from - E ,  we 
find that 

e(k) = - W(4K2Q):) + JeAF/2 - 6E,(J’2/W). (8) 

W ( 4 K 2 9 ; )  [(U/4)* + 4K2t2q?]1’2 - u/4 = D[(1 8K2q:/g)1’2 - 11 (9) 

W is the eigenvalue of the hopping Hamiltonian: 

where q : = cos2(k,/2) + cos2(k,/2). As hole diffusion takes place via the copper ions, 
the factor K~ takes into account the paralieiism (or lack thereof) of the spin on the copper 
ion to that of the hole. In the absence of any correlation between the spin of the hole 
(herespecifiedas o, = t or J ) and the spins on the copperions, in the antiferromagnetic 
state the probability that a given copper ion has the appropriate spin orientation is 1; 
hence = f precisely. 

The term indicated as 6Ek(J’ ”/w) is the second-order contribution of virtual magnon 
emission-absorption, obtainable from (5) To estimate this self-energy contribution to 
the k = Q state, one ignores the magnon energies in the energy denominator d(q) (the 
electronic excitations are Q( l/g) whereas the magnon excitations are O( l/g2)) and uses 
completeness to reduce the spin matrix elements to a ground-state expectation value: 
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withn2(q) = [cos(q,/2) + ~os(q,/2)]~andd(Q) = W(2qi) - W(2qi) L- (2D/g)(2 - q ; ) ,  
after setting K~ = 4. Further approximating n2fq) by its average over the Brillouin zone, 
(n2(q)) = 1, and similarly for (d(q)) = 2D/g, we can evaluate 

N - 2  2 (AFi 1 2 eXp(iq * Rj)S: ~ iAF) = 4. 
4 ~i 

With substitution of J’ (equation (6a ) ) ,  the final result to leading orders in l/g is 
approximately 

6Eo(J”/W) 2 - D(3/4g>(l - 2/g). (11) 
(Had equation (6b )  been used instead of (6a),  this contribution would have been reduced 
by a factor 4. Had we retained ground-state spin correlations (Si * Si), which are negative 
for ( i , j )  nearest neighbours, it would have been further reduced.) However small it 
appears here, the magnon emission-absorption interaction is nevertheless of potential 
interest in the HTS phenomenon (in so far as two travelling waves can conceivably 
exchange a magnon, possibly binding into a Cooper pair), but further elaboration is 
beyond the scope of the present investigation. In summary, the energetically most 
favoured state of a free hole lies at k = 0 (at the bottom of the plane-wave continuum of 
energies) and has an energy that we have estimated to be 

e(0) = - D[(1 + 8/g)lI2 - 1 - 3eAF/2g2 + 3/4g - 3/2g2] 

= - D [ ( 4  + $) /g + O(l/g2)] (12) 
(as measured from - E ) .  The leading terms are the motional energy 4/g and the virtual 
magnon emission contribution 3/4g to the self-energy. Corrections to the latter and to 
the energy of the broken antiferromagnetic bond each contribute in the next order 
O(l/g2) of the l/g expansion. 

4. One hole: soliton states 

We now compare the energies of free-particle states with those of better-localised, i.e. 
strong-coupling states. There are several consequences of localisation, notably the 
antiferromagnetic bond on which the hole principally resides disappears, becoming 
essentially ferromagnetic, the ground state of the now-frustrated spin system is altered 
from the originai antiferromagnetic ground state iw) owing to the presence of this 
anomalous bond, and the hopping parameter i is reduced to where il < 1 is an 
overlap parameter. By way of compensation, however, K~ is simultaneously increased, 
rising from its original value of 4 to 2 ultimately at large g, owing to enhanced correlation 
between the spin of the hole and that of its neighbouring copper ions. As a second 
consequence of this enhanced correlation at large g, the hole loses its individual spin 
(but not its charge), as does one of the two neighbouring copper ions; however, the 
complex as a whole retains spin s = 4. 

Additionally, the effective geometry for antiferromagnetism is now locally frustrated 
as this composite lies at the apex of two triangles as shown in figure 3. The soliton 
ultimately consists of this entity, hopping from bond to bond, in a wavepacket state. 

We examine each consequence of strong coupling in turn. Figure 2 singles out a bond 
and labels its nearest neighbours for future reference. If, at first, the hole is localised on 
the bond at Ro without being permitted to hop, its interaction with two neighbouring 
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Figure 3. At large g’, the bond occupied by a hole effectively disappears. The unpaiied 
electron on the oxygen bond (Ro)  and those on the two neighbouring copper bonds (sites 1 
and 2 in figure 2 )  combine into a new effective spin &, shown as a full circle in this figure. Like 
all other vertices, it represents a spin t interacting antiferromagnetically with neighbouring 
spinsconnectedbyaline (e.g. bonds 1 and3) a1lwithexchangeparameter.l. Forg‘ = J‘ /J  > 4, 
this localised holes has energy AE(J,  g‘) = J(1.82 - g’) relative to the perfect anti- 
ferromagnet illustrated in figure 2. Note that two squares are effectively transformed into 
triangles and thereby ’frustrated’. 

copper ions involves just two terms from equation (5). We write the relevant Hamiltonian 
as H = HA, + Hint, with 

Hint ( R , )  = - JSI * S2 + J’(S1  + S,) * U .  (13) 
Although not identical, the two perturbations (in J and in J’) are simi!ar, in that both 
tend to force SI and S 2  into parallelism. 

The new ground-state energy is given by EAF + AE(J,  J ’ ) ,  with AE remaining to be 
calculated. Before doing so, we obtain upper and lower bounds to AE.  For the upper 

SI6 (see figure 2) and thus to the rest of the lattice, at a cost not exceeding 3eAF; then add 
JeA,/2 - J’, the ground-state energy of Hint(Ro). For a lower bound, we simply add the 
ground-state energies of HAF and of HJR,) .  Consequently, 

1.. “omd,  start by ‘cutting’ the six bonds which connect SI and S, to S3 ,  S5 ,  S6, Si3, SI4 and 

7JeAF/2 - J’ > AE(J,  J ’ )  > J ~ A F / ~  - 1‘. (14) 
Over the range J’ > 4J, our calculated results are found to lie on a straight line and to be 
adequately represented (to % accuracy) by a simple formula 

AE(J,  g ’ )  = J(1.82 - g’> (15) 
with g’ = J ’ / J ,  where 1.82 can be written 5.4eAF/2, showing (15) to lie rather closer to 
the upper bound (in which the soliton is magnetically decoupled from the rest of the 
lattice) than to the lower. However, isJ’ in the stated range greater than 4J? Comparison 
of (6a) and (3a) shows that g‘ = J ‘ / J  = 8g/3 + 8/3 + O(l/g) 3 10 for all g > 3.Even 
at the opposite extreme, had we chosen (6b) and (3b) instead, the ratio g’ = g + 5/2 + 
O(l/g) 3 7 for allg > 4.5. Thus, for any admissible scenario, the simple formula (15) is 
sufficiently accurate. 

With the defective bond located at Ro,  the magnetic ground state of HAF -+ Hi,@,), 
hereafter denoted lg’, Ro),  has lost the translational invariance of the former ground 
state I N ) .  In calculating the hopping of the hole fromRo to a neighbouring bond located 
at R j ,  it is necessary to take this feature into consideration. Towards this end, we 
calculated overlaps A(&, R,)  = (g’, R,lg’,  R , ) ,  as plotted in figure 4 where Ri is one of 
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0 2 4 6 

9’ 

Figure 4. Overlap parameters L, K~ and AK’ as functions of g’ = J ‘ / J .  

two ostensibly inequivalent neighbour sites of Ro (labelled i = 1,3  in figure 2.) In so far 
as A is not zero, allowing the particle to hop lowers its energy. 

In the course of its motion, this composite transports a positive charge, a spin 4 and 
a distortion in the surrounding spins along with it; we use the generic title ‘soliton’, in the 
non-topological sense for the composite moving particle. Owing to a subtle underlying 
symmetry, we always obtain A ,  = A 3 ;  therefore the soliton’s band structure is 
W ( 4 ~ ~ i , q i ) ,  identical in form with that of the free hole studied earlier. At arbitrary k ,  
when measured from - E ,  the soliton’s energy is 

e,,,(k) = - W(4K2A9,2,) + AE(J ,  g ’ )  (16) 
with W the function previously defined in equation (9) and the calculated A E  given in 

The effects on W of the interactions are characterised by 3, (which we find to drop 
from a maximum of about unity at smaii g’ to an asymptotic vaiue of about 0.4775 at 
large g’) and by K~ (which, as we shall see, increases with g‘ from a starting value of 
about 0.5 to a theoretical maximum of 0.75). Because the spin orientation of the hole 
cannot be specified, owing to its interactions with both its copper neighbours, the correct 
expression for K~ differs from that of the free hole (with its specified T or 1 spin 
orientation) treated previously. In the present instance, it is given by 

(15). 

(17) K 2  = 4 - ( U ‘  ,b ,Eo la * S I  lg’, E , )  

where SI refers to the spin of either of the copper ions neighbouring the hole at Eo.  The 
computed quantities A ,  K~ and A K ~  are displayed in figure 4 as functions of g’.  In strong 
coupling, the hole correlates strongly with both its neighbours, with (a  S , )  reaching its 
theoretical limit of -4 (in the ground state of equation (13)) at large g’. 

The very existence of the soliton hinges on whether the enhanced magnetic inter- 
action energy overcomes a possible loss in motional energy compared with the free hole 
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Table 1. Ground-state hole-spin correlations (g', Roluo .  S,lg', R,,) in both weak- and strong- 
coupling limits for the hole at Ro and copper ion spins at i (vertices shown in figure 2). 

k'> Rolao * Sk' .  Ro) 

1,2 -0.3220 -0.4830 
3,5,6.13,14,16 +0.0023 +0.0218 
4.7,9. 10,12,15 - 0.0540 -0.0257 
8 , i i  -0.0217 -0.0004 

discussed earlier. The optimal soliton energy, at k = 0, is 

eSoi(Q) = - D[(1 + 16A~~/g) ' I*  - 1 - 1.82 x 3/g2 + (2/g)(l - l/g)] 

= - D [ ( ~ A K '  + 2)/g + O(l/g2>]. (18) 
Comparison of the leading-order terms here with the equivalent in (12) indicates the 
soliton to be stable relative to the free hole provided that 8 k 2  + 2 > 4.75, i.e. 

A K ~  > 0.344. (19) 
Using the data in figure 4, we obtain A K ~  = 0.5116 at g' = 1, amply satisfying (19). 
Although A K ~  decreases with the increasing g', even at g' = 20 (with K' and ,I at their 
asymptotic limits of 0.75 and 0.4775, andAK2 = 0.3581), it still satisfies the criterion (19) 
by a margin of some 4%. Our conclusion is that the single soliton always has a lower total 
energy than the free-hole state. 

In an attempt to throw some additional light on the nature of the solitonic state, we 
a!so computed the correlations between the hole (atRo) and its neighbouring copper ion 
spins (light-faced numerals in figure 2). Table 1 lists the results in both weak- and strong- 
coupling limits; as might be expected, the correlations are small but long ranged at g' = 
1 and are close to asymptotic (i.e. -4 for i = 1 , 3  and about 0 for all other spins) already 
at g' = 5. 

5. Bi-soliton: bound or unbound? 

In two dimensions, all purely attractive potentials bind in principle. However, we now 
find that the optimal attraction between two solitons to be O(J) rather than O(J')  or 
Q(D).  The heretofore neglected hole-hole repulsion U. might then be sufficient to 
prevent a bound bi-solitonic state from being realised. Table 2 includes the calculated 
interaction energy V(R, - R) of two localised holes. Although attractive. its magnitude 
never exceeds about 1.2 J = 3.6 D/g2 over the entire range of g. In comparison with the 
energy W of translation and the hole-hole repulsion U. such an interaction is too small 
for us to come to any favourable conclusion concerning its possible bound states. 

In performing these calculations, we localised one hole atR, and the other atR, (bold 
numerals in figure 2). While the total ground state (spin plus holes) is always found to 
be a singlet for an even number of sites, the two holes may have their spins parallel or 
anti-parallel on average, depending on their separation. If separated by an odd number 
of copper ion sites we find them to be parallel; if separated by an even number of copper 
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Table 2. Two-hole ground-state interaction energies V(Ro ,  R )  and spin correlations (ao uR) 
in both weak- and strong-coupling limits. One hole is at Ro and the second at R (as shown in 
bold numerals in figure 2). 

g ' s J ' / J=  1 g' = 5 

R ( (20.0~) V ( R  - Ro) (WO . UR) V ( R  - R d  

1,3 +0.2331 -0.93092J +O. 1743 - 1.148443 
2 -0.4361 -0.87835J -0.1030 -1.09968J 
4 -0.3357 -0.835 13J -0.0732 -0.951 93J 
6 -0.4846 -0.690233 -0.0474 -0.724 13J 
7 +0.2261 -0.567 71 J +0.0754 -0.43100J 
5 , 9  +0.2289 -0.492 76J +O. 0693 -0.36962J 

sites, they are anti-parallel. (The sign of the ground-state correlation function appears 
to be exactly the same as in the corresponding NCel state, the ground state of the Ising 
antiferromagnet, although the magnitudes are quite different. In fact, the Ising model? 
provides a helpful guide to some of the results reported here.) 

Because the ground state of N copper spins plus two holes is a global singlet, the 
individual spins of the two holes cannot be specified. If, nevertheless, it were desirable 
to eliminate the background of copper ion spins in favour of an effective two-body 
potential connecting the two holes, this potential would have to take an unusual spin- 
dependent form. For, if the spins of the two solitons were maintained parallel, their 
interaction would be attractive for nearest neighbours but repulsive at next-nearest- 
neighbour positions. Conversely, if the spins were artificially maintained anti-parallel, 
in a relative singlet the interaction of the two solitons would be repulsive at the nearest- 
neighbour sites and attractive at next-nearest-neighbour positions. Thus the simplest 
possible effective Interaction between twc solitonic holes takes the form 

with both vo  and u1 oscillatory, decreasing functions of distance, which do not exceed 
O(J) at their maximum magnitude. 

6. Summary 

I n  summary, in this paper it has been demonstrated that carriers introduced into the 
insulating phase of Cu02  planes are positively charged, strongly coupled entities, living 
on the oxygen ligands and carrying spin 4. The self-energy and band structure of these 
soliton entities have been determined in equation (16). 

Because of the relatively extended spin cloud surrounding each carrier (see table 1), 
the mean-free path (owing to scattering by magnetic defects, thermal fluctuations in the 
underlying antiferromagnet and other inhomogeneities) is expected to be relatively 
short. This is in accord with the hopping-type conductivity characteristic of, and observed 
in [I-41, the insulating phase. We have also determined that pairing of such solitons in 
the low-density phase is not particularly favoured, but neither is it definitely ruled out. 

f The critical density p o  can be estimated by assuming that seven bonds are affected by each hole (cf figures 
2 and3); thus all bonds are affected whenp i= 4 i= 29%. The exact solution of the appropriate two-dimensional 
Ising model yields 28.3%, in close agreement with this estimate [25]. 
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At a higher carrier density a non-magnetic metallic phase is known to replace the 
antiferromagnetic phase. The conditions for this to occur are amenable to analysis 
[25] .  However, examination of this metallic phase, and of its possible superconducting 
properties, lies outside the purview of the present calculations. 
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